Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Appl Opt ; 63(3): 861-864, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294402

RESUMO

The critical dimensions (CDs) of gratings significantly influence their optical performances and require high-resolution measurements. To avoid damaging the gratings, a model-based optical critical dimension (OCD) measurement method utilizing ellipsometry or scatterometry was applied by matching the simulated and experimental values. However, online CD measurements during grating fabrication require a bulky presimulated library containing the condition points with various CDs, making it time consuming and resource intensive to build with large dimension ranges to account for grating fabrication errors. In this study, we proposed a smaller random library with an unevenly distributed resolution, offering finer resolution when the grating to be measured is close to the reference grating. This approach, validated using a home-constructed spectroscopic ellipsometer, resulted in better results. Finally, a local search algorithm based on a random library was applied to further improve the measurement accuracy. This approach extraordinarily reduced the preparation time for OCD measurements and achieved better performance, significantly improving the efficiency of grating development and fabrication inspection.

2.
J Transl Med ; 21(1): 539, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573318

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide because of rapid progression and high incidence of metastasis or recurrence. Accumulating evidence shows that CD58-expressing tumor cell is implicated in development of various cancers. The present study aimed to reveal the functional significance of CD58 in HCC progression and the underlying mechanisms. METHODS: Immunohistochemical staining (IHC), and western blotting were used to detect the expression of CD58 in HCC tissues and cells. The levels of sCD58 (a soluble form of CD58) in the cell supernatants and serum were assessed by ELISA. CCK-8, colony formation, and xenograft assays were used to detect the function of CD58 on proliferation in vitro and in vivo. Transwell assay and sphere formation assay were performed to evaluate the effect of CD58 and sCD58 on metastasis and self-renewal ability of HCC cells. Western blotting, immunofluorescence (IF), TOP/FOP Flash reporter assay, and subcellular fractionation assay were conducted to investigate the molecular regulation between CD58/sCD58 and AKT/GSK-3ß/ß-catenin axis in HCC cells. RESULTS: CD58 was significantly upregulated in HCC tissues. Elevation of CD58 expression correlated with more satellite foci and vascular invasion, and poorer tumor-free and overall survival in HCC patients. Higher sCD58 levels were in HCC patients' serum compared to healthy individuals. Functionally, CD58 promotes the proliferation of HCC cells in vitro and in vivo. Meanwhile, CD58 and sCD58 induce metastasis, self-renewal and pluripotency in HCC cells in vitro. Mechanistically, CD58 activates the AKT/GSK-3ß/ß-catenin signaling pathway by increasing phosphorylation of AKT or GSK3ß signaling, promoting expression of Wnt/ß-catenin target proteins and TCF/LEF-mediated transcriptional activity. Furthermore, AKT activator SC-79 or inhibitor LY294002 abolished the inhibitory effect of CD58 silencing on the proliferation, metastasis, and stemness of HCC cells. CONCLUSIONS: Taken together, CD58 promotes HCC progression and metastasis via activating the AKT/GSK-3ß/ß-catenin pathway, suggesting that CD58 is a novel prognostic biomarker and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , beta Catenina/metabolismo , Carcinógenos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antígenos CD58/metabolismo
3.
Opt Lett ; 48(10): 2504-2507, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186694

RESUMO

The optical sparse aperture (OSA) imaging technique is capable of improving the spatial resolution of a telescope while maintaining lower size, weight, and cost. The majority of OSA system researches separately focus on the design optimization of aperture layout and the method for image restoration, which have great design redundancy. In this Letter, an end-to-end design framework that simultaneously optimizes the aperture layout parameters of the OSA system and neural network parameters of image restoration is proposed, which achieves excellent imaging quality. The results show that adequate image mid-frequency information captured by the OSA system benefits network processing more than incomplete high-frequency information in a few directions. Based on this framework, we design a simplified OSA system on geostationary orbit. The simulation results show that our simplified OSA system with six sub-apertures measuring 1.2m each has a comparable imaging performance to a single-aperture system measuring 12 m.

4.
Biochem Pharmacol ; 210: 115489, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893815

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common causes of malignancy-related deaths. Lenvatinib, as a multi-targeted tyrosine kinase inhibitor, has gained increasing attention for its antitumor activity. However, the effect and mechanisms of Lenvatinib on HCC metastasis are virtually unknown. In this study, we revealed that Lenvatinib inhibited HCC cell motility and epithelial mesenchymal transition (EMT), along with cell adhesion and extension. Concomitant high DNMT1 and UHRF1 mRNA levels were in HCC patients and indicated worse prognosis. On the one hand, Lenvatinib modulated the transcription of UHRF1 and DNMT1via negatively regulation of ERK/MAPK pathway. On the other hand, Lenvatinib downregulated DNMT1 and UHRF1 expression by promoting their protein degradation through ubiquitin-proteasome pathway, consequently, resulting in upregulation of E-Cadherin. Moreover, Lenvatinib attenuated Huh7 cell adhesion and metastasis in vivo. Our findings provided insight into the intriguing molecular mechanisms regarding the anti-metastasis effect of Lenvatinib in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Ubiquitinação , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Nat Metab ; 4(10): 1306-1321, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36192599

RESUMO

Extracellular vesicles play crucial roles in intercellular communication in the tumor microenvironment. Here we demonstrate that in hepatic fibrosis, TGF-ß stimulates the palmitoylation of hexokinase 1 (HK1) in hepatic stellate cells (HSCs), which facilitates the secretion of HK1 via large extracellular vesicles in a TSG101-dependent manner. The large extracellular vesicle HK1 is hijacked by hepatocellular carcinoma (HCC) cells, leading to accelerated glycolysis and HCC progression. In HSCs, the nuclear receptor Nur77 transcriptionally activates the expression of depalmitoylase ABHD17B to inhibit HK1 palmitoylation, consequently attenuating HK1 release. However, TGF-ß-activated Akt functionally represses Nur77 by inducing Nur77 phosphorylation and degradation. We identify the small molecule PDNPA that binds Nur77 to generate steric hindrance to block Akt targeting, thereby disrupting Akt-mediated Nur77 degradation and preserving Nur77 inhibition of HK1 release. Together, this study demonstrates an overlooked function of HK1 in HCC upon its release from HSCs and highlights PDNPA as a candidate compound for inhibiting HCC progression.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Estreladas do Fígado/metabolismo , Hexoquinase/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Microambiente Tumoral
6.
Comput Intell Neurosci ; 2022: 7780756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262601

RESUMO

Salient Object Detection (SOD) simulates the human visual perception in locating the most attractive objects in the images. Existing methods based on convolutional neural networks have proven to be highly effective for SOD. However, in some cases, these methods cannot satisfy the need of both accurately detecting intact objects and maintaining their boundary details. In this paper, we present a Multiresolution Boundary Enhancement Network (MRBENet) that exploits edge features to optimize the location and boundary fineness of salient objects. We incorporate a deeper convolutional layer into the backbone network to extract high-level semantic features and indicate the location of salient objects. Edge features of different resolutions are extracted by a U-shaped network. We designed a Feature Fusion Module (FFM) to fuse edge features and salient features. Feature Aggregation Module (FAM) based on spatial attention performs multiscale convolutions to enhance salient features. The FFM and FAM allow the model to accurately locate salient objects and enhance boundary fineness. Extensive experiments on six benchmark datasets demonstrate that the proposed method is highly effective and improves the accuracy of salient object detection compared with state-of-the-art methods.


Assuntos
Redes Neurais de Computação , Percepção Visual , Humanos , Atenção , Semântica , Benchmarking
7.
BMC Genomics ; 23(1): 596, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974339

RESUMO

BACKGROUND: Explored the molecular science of anther development is important for improving productivity and overall yield of crops. Although the role of regulatory RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), in regulating anther development has been established, their identities and functions in Camellia oleifera, an important industrial crop, have yet not been clearly explored. Here, we report the identification and characterization of genes, lncRNAs and miRNAs during three stages of the tropical C. oleifera anther development by single-molecule real-time sequencing, RNA sequencing and small RNA sequencing, respectively. RESULTS: These stages, viz. the pollen mother cells stage, tetrad stage and uninucleate pollen stage, were identified by analyzing paraffin sections of floral buds during rapid expansion periods. A total of 18,393 transcripts, 414 putative lncRNAs and 372 miRNAs were identified, of which 5,324 genes, 115 lncRNAs, and 44 miRNAs were differentially accumulated across three developmental stages. Of these, 44 and 92 genes were predicted be regulated by 37 and 30 differentially accumulated lncRNAs and miRNAs, respectively. Additionally, 42 differentially accumulated lncRNAs were predicted as targets of 27 miRNAs. Gene ontology enrichment indicated that potential target genes of lncRNAs were enriched in photosystem II, regulation of autophagy and carbohydrate phosphatase activity, which are essential for anther development. Functional annotation of genes targeted by miRNAs indicated that they are relevant to transcription and metabolic processes that play important roles in microspore development. An interaction network was built with 2 lncRNAs, 6 miRNAs and 10 mRNAs. Among these, miR396 and miR156 family were up-regulated, while their targets, genes (GROWTH REGULATING FACTORS and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes) and lncRNAs, were down-regulated. Further, the trans-regulated targets of these lncRNAs, like wall-associated kinase2 and phosphomannose isomerase1, are involved in pollen wall formation during anther development. CONCLUSIONS: This study unravels lncRNAs, miRNAs and miRNA-lncRNA-mRNA networks involved in development of anthers of the tropical C. oleifera lays a theoretical foundation for further elucidation of regulatory roles of lncRNAs and miRNAs in anther development.


Assuntos
Camellia , MicroRNAs , RNA Longo não Codificante , Camellia/genética , Camellia/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
8.
Cell Death Discov ; 8(1): 334, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869046

RESUMO

RNF31 (HOIP), RBCK1 (HOIL-1L), and SHARPIN are subunits of the linear ubiquitin chain assembly complex. Their function and specific molecular mechanisms in hepatocellular carcinoma (HCC) have not been reported previously. Here, we investigated the role of RNF31 and RBCK1 in HCC. We showed that RNF31 and RBCK1 were overexpressed in HCC and that upregulation of RNF31 and RBCK1 indicated poor clinical outcomes in patients with HCC. RNF31 overexpression was significantly associated with more satellite foci and vascular invasion in patients with HCC. Additionally, RBCK1 expression correlated positively with RNF31 expression in HCC tissues. Functionally, RBCK1 and RNF31 promote the metastasis and growth of HCC cells. Moreover, the RNF31 inhibitor gliotoxin inhibited the malignant behavior of HCC cells. Mechanistically, RBCK1 interacted with RNF31 and repressed its ubiquitination and proteasomal degradation. In summary, the present study revealed an oncogenic role and regulatory relationship between RBCK1 and RNF31 in facilitating proliferation and metastasis in HCC, suggesting that they are potential prognostic markers and therapeutic targets for HCC.

9.
Animals (Basel) ; 12(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681834

RESUMO

Covert mortality nodavirus (CMNV), from the Nodaviridae family, is characterized by its unique cross-species transmission and wide epidemic distribution features. In this study, Macrobrachium rosenbergii was proved to be infected naturally by CMNV, which further expand the known host range of CMNV. Here, 61.9% (70/113) of the M. rosenbergii samples collected from Jiangsu Province were CMNV positive in the TaqMan RT-qPCR assay, which indicated the high prevalence of CMNV in M. rosenbergii. Meanwhile, the sequences of CMNV RdRp gene cloned from M. rosenbergii were highly identical to that of the original CMNV isolate from Penaeus vannamei. In situ hybridization (ISH) and histology analysis indicated that the intestine, gill, hepatopancreas and ovary were the targeted organs of CMNV infection in M. rosenbergii, and obvious histopathological damage including vacuolation and karyopyknosis were occurred in the above organs. Notably, the presence of CMNV in gonad alerted its potential risk of vertical transmission in M. rosenbergii. Additionally, numerous CMNV-like particles could be observed in tissues of hepatopancreas and gill under transmission electron microscopy. Collectively, our results call for concern of the potential negative impact of the spread and prevalence of CMNV in M. rosenbergii on its aquaculture, as well as providing a renewed orientation for further investigation and exploration of the diverse pathogenic factors causing M. rosenbergii diseases.

10.
Front Oncol ; 12: 875122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646715

RESUMO

Epigenetic modification of chromatin is involved in non-malignant pituitary neoplasia by causing abnormal expression of tumor suppressors and oncogenes. These changes are potentially reversible, suggesting the possibility of targeting tumor cells by restoring the expression of epigenetically silenced tumor suppressors. The role of the histone deacetylase (HDAC) family in pituitary tumorigenesis is not known. We report that HDAC2 and 3, Class I HDAC members, are highly expressed in clinically non-functioning pituitary adenomas (NFPAs) compared to normal pituitary (NP) samples as determined by RT-PCR and immunohistochemical staining (IHC). Treatment of a human NFPA derived folliculostellate cell line, PDFS, with the HDAC3 inhibitor RGFP966 for 96 hours resulted in inhibition of cell proliferation by 70%. Furthermore, the combination of RGFP966 with a methyltransferase/DNMT inhibitor, 5'-aza-2'-deoxycytidine, led to the restoration of the expression of several tumor suppressor genes, including STAT1, P16, PTEN, and the large non-coding RNA tumor suppressor MEG3, in PDFS cells. Our data support the hypothesis that both histone modification and DNA methylation are involved in the pathogenesis of human NFPAs and suggest that targeting HDACs and DNA methylation can be incorporated into future therapies.

11.
Front Genet ; 13: 883422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547261

RESUMO

Dalbergia odorifera is a rare and precious rosewood specie, whose wood is a very high-quality material for valuable furniture and carving crafts. However, limited information is available about the process of wood formation in D. odorifera. To determine genes that might be closely associated with the xylem differentiation process, we analyzed the differentially expressed genes (DEGs) and microRNAs (miRNAs) from specific xylem tissues of D. odorifera by RNA sequencing (RNA-seq) and small RNA sequencing (small RNA-seq). In total, we obtained 134,221,955 clean reads from RNA-seq and 90,940,761 clean reads from small RNA-seq. By comparing the transition zone (Dotz) and sapwood (Dosw) samples, a total of 395 DEGs were identified. Further analysis revealed that DEGs encoded for WRKY transcription factors (eight genes), lignin synthesis (PER47, COMT, CCR2), cell wall composition (UXS2), gibberellin synthesis (KAO2, GA20OX1), jasmonic acid synthesis (OPR2, CYP74A), and synthesis of flavonoids (PAL2) and terpenoids (CYP71A1). Subsequently, a preliminary analysis by small RNA-seq showed that the expressions of 14 miRNAs (such as miR168a-5p, miR167f-5p, miR167h-5p, miR167e, miR390a, miR156g, novel_52, and novel_9) were significantly different between Dotz and Dosw. Further analysis revealed that the target genes of these differentially expressed miRNAs were enriched in the GO terms "amino acid binding," "cellulase activity," and "DNA beta-glucosyltransferase activity". Further, KEGG pathway annotation showed significant enrichment in "fatty acid elongation" and "biosynthesis of unsaturated fatty acids". These processes might be participating in the xylem differentiation of D. odorifera. Next, expression correlation analysis showed that nine differentially expressed miRNAs were significantly negatively associated with 21 target genes, which encoded for proteins such as pyrH, SPL6, SPL12, GCS1, and ARF8. Overall, this is the first study on miRNAs and their potential functions in the xylem development of D. odorifera, which provides a stepping stone for a detailed functional investigation of D. odorifera miRNAs.

12.
Front Oncol ; 12: 875219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600354

RESUMO

Introduction: Angiogenesis in pituitary tumors is not fully understood, and a better understanding could help inform new pharmacologic therapies, particularly for aggressive pituitary tumors. Materials and Methods: 219 human pituitary tumors and 12 normal pituitary glands were studied. Angiogenic genes were quantified by an angiogenesis qPCR array and a TaqMan probe-based absolute qPCR. Angiogenesis inhibition in pituitary tumors was evaluated in vitro with the endothelial tube formation assay and in vivo in RbΔ19 mice. Results: 71 angiogenic genes, 40 of which are known to be involved in sprouting angiogenesis, were differentially expressed in pituitary tumors. Expression of endothelial markers CD31, CD34, and ENG was significantly higher in pituitary tumors, by 5.6, 22.3, and 8.2-fold, respectively, compared to in normal pituitary tissue. There was no significant difference in levels of the lymphatic endothelial marker LYVE1 in pituitary tumors compared with normal pituitary gland tissue. Pituitary tumors also expressed significantly higher levels of angiogenesis growth factors, including VEGFA (4.2-fold), VEGFB (2.2), VEGFC (19.3), PGF (13.4), ANGPT2 (9.2), PDGFA (2.7), PDGFB (10.5) and TGFB1 (3.8) compared to normal pituitary tissue. Expression of VEGFC and PGF was highly correlated with the expression of endothelial markers in tumor samples, including CD31, CD34, and ENG (endoglin, a co-receptor for TGFß). Furthermore, VEGFR inhibitors inhibited angiogenesis induced by human pituitary tumors and prolonged survival of RbΔ19 mice. Conclusion: Human pituitary tumors are characterized by more active angiogenesis than normal pituitary gland tissue in a manner consistent with sprouting angiogenesis. Angiogenesis in pituitary tumors is regulated mainly by PGF and VEGFC, not VEGFA and VEGFB. Angiogenesis inhibitors, such as the VEGFR2 inhibitor cabozantinib, may merit further investigation as therapies for aggressive human pituitary tumors.

13.
Lab Chip ; 22(4): 727-732, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35024706

RESUMO

Hydrogels can provide a three-dimensional microenvironment for cells and thus serve as an extracellular matrix in a biofabrication process. The properties of hydrogels, such as their porosity and mechanical properties, significantly influence the cell growth. However, there is still a lack of effective methods for characterizing the hydrogel structure noninvasively. Herein, a photoacoustic (PA) imaging-based method is proposed for the characterization of gelatin methacrylate (GelMA) hydrogels. Owing to their high PA contrast, red blood cells (RBCs) are included as mediators in the GelMA hydrogel to analyze its pore distribution. The interconnectivity of the pores is further analyzed through the lysis of RBCs. The diffusion of the RBC lysis buffer in the GelMA is consistent with the trend observed in simulations. The analyzed vitality of HEK293 cells in different GelMA hydrogels reveals that understanding the diffusion of solutes (i.e., nutrients) is a potential strategy to optimize the hydrogel parameters during biofabrication.


Assuntos
Gelatina , Técnicas Fotoacústicas , Gelatina/química , Células HEK293 , Humanos , Hidrogéis/química , Metacrilatos/química , Engenharia Tecidual/métodos
14.
Front Plant Sci ; 13: 1064262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600926

RESUMO

Introduction: Lignin is a complex aromatic polymer plays major biological roles in maintaining the structure of plants and in defending them against biotic and abiotic stresses. Cinnamoyl-CoA reductase (CCR) is the first enzyme in the lignin-specific biosynthetic pathway, catalyzing the conversion of hydroxycinnamoyl-CoA into hydroxy cinnamaldehyde. Dalbergia odorifera T. Chen is a rare rosewood species for furniture, crafts and medicine. However, the CCR family genes in D. odorifera have not been identified, and their function in lignin biosynthesis remain uncertain. Methods and Results: Here, a total of 24 genes, with their complete domains were identified. Detailed sequence characterization and multiple sequence alignment revealed that the DoCCR protein sequences were relatively conserved. They were divided into three subfamilies and were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that seven DoCCRs were grouped together with functionally characterized CCRs of dicotyledons involved in developmental lignification. Synteny analysis showed that segmental and tandem duplications were crucial in the expansion of CCR family in D. odorifera, and purifying selection emerged as the main force driving these genes evolution. Cis-acting elements in the putative promoter regions of DoCCRs were mainly associated with stress, light, hormones, and growth/development. Further, analysis of expression profiles from the RNA-seq data showed distinct expression patterns of DoCCRs among different tissues and organs, as well as in response to stem wounding. Additionally, 74 simple sequence repeats (SSRs) were identified within 19 DoCCRs, located in the intron or untranslated regions (UTRs), and mononucleotide predominated. A pair of primers with high polymorphism and good interspecific generality was successfully developed from these SSRs, and 7 alleles were amplified in 105 wild D. odorifera trees from 17 areas covering its whole native distribution. Discussion: Overall, this study provides a basis for further functional dissection of CCR gene families, as well as breeding improvement for wood properties and stress resistance in D. odorifera.

15.
Front Oncol ; 11: 747282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676172

RESUMO

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death globally. Currently there is a lack of tumor-selective and efficacious therapies for hepatocellular carcinoma. ß-Lapachone (ARQ761 in clinical form) selectively kill NADPH: quinone oxidoreductase 1 (NQO1)-overexpressing cancer cells. However, the effect of ß-Lapachone on HCC is virtually unknown. In this study, we found that relatively high NQO1 and low catalase levels were observed in both clinical specimens collected from HCC patients and HCC tumors from the TCGA database. ß-Lapachone treatment induced NQO1-selective killing of HCC cells and caused ROS formation and PARP1 hyperactivation, resulting in a significant decrease in NAD+ and ATP levels and a dramatic increase in double-strand break (DSB) lesions over time in vitro. Administration of ß-Lapachone significantly inhibited tumor growth and prolonged survival in a mouse xenograft model in vivo. Our data suggest that NQO1 is an ideal potential biomarker, and relatively high NQO1:CAT ratios in HCC tumors but low ratios in normal tissues offer an optimal therapeutic window to use ß-Lapachone. This study provides novel preclinical evidence for ß-Lapachone as a new promising chemotherapeutic agent for use in NQO1-positive HCC patients.

16.
ACS Appl Mater Interfaces ; 13(33): 39550-39560, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378373

RESUMO

Tunable microlens arrays (MLAs) with controllable focal lengths have been extensively used in optical sensors, biochips, and electronic devices. The commonly used method is electrowetting on dielectric (EWOD) that controls the contact angle of the microlens to adjust the focal length. However, the fabrication of tunable MLAs at the microscale remains a challenge because the size of MLAs is limited by the external electrodes of EWOD. In this study, a highly integrated planar annular microelectrode array was proposed to achieve an electrowetting tunable MLA. The planar microelectrode was fabricated by electrohydrodynamic jet (E-jet) printing and the liquid microlens was then deposited in situ on the microelectrode. This method could realize 36 tunable liquid microlenses with an average diameter of 24 µm in a 320 × 320 µm2 plane. The fabricated tunable MLAs with higher integration levels and smaller sizes can be beneficial for cell imaging, optofluidic systems, and microfluidic chips.

17.
BMC Genomics ; 22(1): 543, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271866

RESUMO

BACKGROUND: Most plants rely on photosynthesis; therefore, albinism in plants with leaves that are white instead of green causes slow growth, dwarfing, and even death. Although albinism has been characterized in annual model plants, little is known about albino trees. Jackfruit (Artocarpus heterophyllus) is an important tropical fruit tree species. To gain insight into the mechanisms underlying the differential growth and development between albino jackfruit mutants and green seedlings, we analyzed root, stem, and leaf tissues by combining PacBio single-molecule real-time (SMRT) sequencing, high-throughput RNA-sequencing (RNA-seq), and metabolomic analysis. RESULTS: We identified 8,202 differentially expressed genes (DEGs), including 225 genes encoding transcription factors (TFs), from 82,572 full-length transcripts. We also identified 298 significantly changed metabolites (SCMs) in albino A. heterophyllus seedlings from a set of 692 metabolites in A. heterophyllus seedlings. Pathway analysis revealed that these DEGs were highly enriched in metabolic pathways such as 'photosynthesis', 'carbon fixation in photosynthetic organisms', 'glycolysis/gluconeogenesis', and 'TCA cycle'. Analysis of the metabolites revealed 76 SCMs associated with metabolic pathways in the albino mutants, including L-aspartic acid, citric acid, succinic acid, and fumaric acid. We selected 225 differentially expressed TF genes, 333 differentially expressed metabolic pathway genes, and 76 SCMs to construct two correlation networks. Analysis of the TF-DEG network suggested that basic helix-loop-helix (bHLH) and MYB-related TFs regulate the expression of genes involved in carbon fixation and energy metabolism to affect light responses or photomorphogenesis and normal growth. Further analysis of the DEG-SCM correlation network and the photosynthetic carbon fixation pathway suggested that NAD-ME2 (encoding a malic enzyme) and L-aspartic acid jointly inhibit carbon fixation in the albino mutants, resulting in reduced photosynthetic efficiency and inhibited plant growth. CONCLUSIONS: Our preliminarily screening identified candidate genes and metabolites specifically affected in albino A. heterophyllus seedlings, laying the foundation for further study of the regulatory mechanism of carbon fixation during photosynthesis and energy metabolism. In addition, our findings elucidate the way genes and metabolites respond in albino trees.


Assuntos
Albinismo , Artocarpus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Folhas de Planta/genética , Plântula/genética , Transcriptoma
18.
J Hepatocell Carcinoma ; 8: 451-465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046369

RESUMO

BACKGROUND: Emerging evidences have highlighted the roles of neutrophils, as the major host microenvironment component, in the development of hepatocellular carcinoma (HCC). Neutrophils extracellular traps (NETs) produced in the infection can strengthen the behavior of cancer metastasis. Here, we investigated the roles of NETs in HCC metastasis and further explore the underlying mechanism of how NETs interact with cancer. METHODS: The neutrophils were isolated from whole blood of HCC patients and used to evaluate the formation of NETs. NET markers were detected in tissue samples, plasma and cell climbing slice. Mouse models were used to evaluate the roles of NETs in HCC metastasis in vivo, and the corresponding mechanisms were explored using in vivo and in vitro assays. RESULTS: An increase in the release of NETs in patients with HCC, particularly those with portal vein tumor thrombosis (PVTT). The presence of NETs in HCC tumor tissues closely correlated with a poor prognosis. Functionally, the invasion ability of HCC cells was enhanced by co-culture with HCC neutrophils, through NETs formation, while the neutrophils from a healthy donor (HD) exhibited the inhibition of the invasion ability. Furthermore, we observed an enhanced ability of forming NETs in neutrophils from HCC patients in vitro, especially patients with PVTT or extra-hepatic metastasis. An in-vivo animal study demonstrated that neutrophils of HCC facilitated the metastatic behavior towards the lung. The further mechanistic investigation unveiled that HCC cells-derived cytokine IL-8 triggered NETs formation in an NADPH oxidase-dependent manner, and NETs-associated cathepsin G (cG) promoted HCC metastasis in vitro as well as vivo. Clinically, the expression of the cG protein in tumor tissues displayed a close correlation with the disease prognosis of HCC patients. CONCLUSION: Our findings implicated that the induction of NETs by HCC cells is a critical metastasis-supporting cancer-host interaction and that NETs may serve as an immune-based potential therapeutic target against HCC progression.

19.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33974568

RESUMO

BACKGROUNDAdipocytes were long considered inert components of the bone marrow niche, but mouse and human models suggest bone marrow adipose tissue (BMAT) is dynamic and responsive to hormonal and nutrient cues.METHODSIn this study of healthy volunteers, we investigated how BMAT responds to acute nutrient changes, including analyses of endocrine determinants and paracrine factors from marrow aspirates. Study participants underwent a 10-day high-calorie protocol, followed by a 10-day fast.RESULTSWe demonstrate (a) vertebral BMAT increased significantly during high-calorie feeding and fasting, suggesting BMAT may have different functions in states of caloric excess compared with caloric deprivation; (b) ghrelin, which decreased in response to high-calorie feeding and fasting, was inversely associated with changes in BMAT; and (c) in response to high-calorie feeding, resistin levels in the marrow sera, but not the circulation, rose significantly. In addition, TNF-α expression in marrow adipocytes increased with high-calorie feeding and decreased upon fasting.CONCLUSIONHigh-calorie feeding, but not fasting, induces an immune response in bone marrow similar to what has been reported in peripheral adipose tissue. Understanding the immunomodulatory regulators in the marrow may provide further insight into the homeostatic function of this unique adipose tissue depot.FUNDINGNIH grant R24 DK084970, Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences, NIH, award UL 1TR002541), and NIH grants P30 DK040561 and U19 AG060917S1.


Assuntos
Tecido Adiposo , Medula Óssea , Jejum/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Adulto , Medula Óssea/metabolismo , Medula Óssea/fisiologia , Feminino , Humanos , Masculino
20.
Lab Chip ; 21(13): 2586-2593, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34008680

RESUMO

Counting the number of red blood cells (RBCs) in blood samples is a common clinical diagnostic procedure, but conventional methods are unable to provide the size and other physical properties of RBCs at the same time. In this work, we explore photoacoustic (PA) detection as a rapid label-free and noninvasive analysis technique that can potentially be used for single RBC characterization based on their photoabsorption properties. We have demonstrated an on-chip PA flow cytometry system using a simple microfluidic chip combined with a PA imaging system to count and characterize up to ∼60 RBCs per second. Compared with existing microfluidic-based RBC analysis methods, which typically use camera-captured image sequences to characterize cell morphology and deformation, the PA method discussed here requires only the processing of one-dimensional time-series data instead of two- or three-dimensional time-series data acquired by computer vision methods. Therefore, the PA method will have significantly lower computational requirements when large numbers of RBCs are to be analyzed. Moreover, we have demonstrated that the PA signals of RBCs flowing in a microfluidic device could be directly used to acquire the osmolarity conditions (in the range of 124 to 497 mOsm L-1) of the medium surrounding the RBCs. This finding suggests a potential extension of applicability to blood tests via PA-based biomedical detection.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Contagem de Eritrócitos , Eritrócitos , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA